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We analyze the results of molecular-dynamics simulations of the interfacial (Kapitza)
resistance of representative grain boundaries in Si. Simulations of the interactions of
phonon wave packets with the Si grain boundaries show that the scattering process
depends strongly on both the branch and wavelength of the incident phonons. This
approach has the potential for providing detailed spectral information to mesoscale
simulations of thermal transport in interfacial systems.
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1. Introduction
It has long been recognized that in the presence of a
heat current there is a discontinuity in temperature at
an interface between two different materials [1, 2]. As a
result, interfaces possess a finite thermal conductance,
σK , known as the Kapitza conductance. The relation
between the thermal current J and the temperature dis-
continuity at the interface �T is given as,

J = σK �T (1)

As a result of the temperature discontinuity at inter-
faces, a material will exhibit an effective thermal con-
ductivity that decreases as the number of interfaces is
increased. The Kapitza resistance RK = 1/σK is a mea-
sure of the resistance of an interface to the transport of
heat through it. There is no general understanding of
the Kapitza conductance.

In electrical insulators, the fundamental mechanism
underlying the Kapitza resistance is the scattering of
phonons from the interfaces. Here we describe the first
steps towards developing a microscopic understanding
of phonon scattering at interfaces and its relationship to
thermal transport using, as described below, a judicious
combination of atomic-level simulations of the interfa-
cial conductance itself, combined with direct mecha-
nistic simulations of phonon scattering at various kinds
of interfaces.

The rest of the paper is organized as follows. In
Section 2, we describe the geometry of the simu-
lation cells used and the simulation methodologies.
In Section 3, we present results for the computed

Kapitza conductance for three different grain bound-
aries. Section 4 contains a discussion of phonon wave-
packet scattering from interfaces. Section 5 contains our
conclusions.

2. Simulation methods
The most direct method of computing the thermal con-
ductivity is analogous to an experimental measurement,
see Fig. 1. The simulation cell is periodic in three di-
mensions, with heat added in a thin slab of thickness
d centered at z = −Lz/4 and removed from a slab of
the same thickness centered at z = +Lz/4. When the
system achieves steady state, the resulting temperature
drop at the interface can be used to determine σK ; the
temperature gradient, dT /dz in the perfect-crystal re-
gions is a measure of the thermal conductivity of the
material, k, which can be determined from Fourier’s
Law: J = −κ dT/dz. Although this direct method in-
volves large temperature drops (10–100 K) and temper-
ature gradients (∼109 K/m), careful simulations have
established that the thermal transport coefficients can
still be accurately determined [3].

The interfacial conductance is an incomplete mea-
sure of the phonon-interface interaction, since it con-
volutes the effects of phonons of all different branches
and frequencies; moreover, it provides no mechanis-
tic information. To dissect the mechanism of the scat-
tering of phonons from an interface, we have devel-
oped a method of launching phonon wave packets into
an interface and analyzing the subsequent scattering
events.
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Figure 1 Schematic representation of the three-dimensional periodic
simulation cell for direct computation of the Kapitza conductance. At
each MD time step, energy �ε is added to a thin slab of atoms at
z = −Lz/4 and is subtracted from a thin slab at z = +Lz/4. This
results in two identical thermal currents, Jz , along the positive and neg-
ative z-axes, as labeled. The two crystallographically equivalent grain
boundaries present in the cell at z = −Lz/2 and z = 0 are labeled as
GB1 and GB2.

Phonon wave packets are formed from a linear com-
bination of vibrational eigenstates [4].

uilµ(0) =
∑

λk

aλkεiµλk exp(ik · R1) (3)

Here, uilµ(0) represents the µth Cartesian component
of the displacement for atom i in the unit cell labeled
by l. The polarization vector, εiµλk, of the normal mode
with wave vector k in band λ is determined by diagonal-
izing the dynamical matrix of the bulk perfect crystal.
The aλk, which determine the amplitude of the normal
modes, are chosen to yield vibrational wave packets
that are localized in both real space and wave vector
space [5]. In the absence of any scattering in the sys-
tem from anharmonicity or defects, the wave packets
propagate without spreading or decaying. The introduc-
tion of an interface breaks the periodicity of the crystal
lattice, providing a scattering site for the phonons. In
principle, the interface conductance can be calculated
in a straightforward manner from the full frequency
and mode dependence of the transmission coefficient
of phonons through the interface [4].

To gain insight into the scattering process, the atomic
positions after the scattering event can be analyzed in
terms of the normal modes of the bulk perfect crystal by
Fourier analysis. Given the amplitude of each normal
mode, it is then possible to directly compute the amount
of energy contained in a given mode. By including only
atoms left or right of the grain boundary, we can study
the reflected and transmitted waves separately.

3. Kapitza conductance of Si grain
boundaries

As a simple model system, in which to begin to de-
velop an understanding of phonon-interface scattering
we have chosen Si. The interactions are described by
the Stillinger-Weber (SW) potential [6]. Fig. 2 shows
the temperature profiles through three representative
twist grain boundaries in Si: (001) θ = 43.60◦ �29,
(001) θ = 11.42◦ �101, and (111) θ = 42.10◦ �31.
The resulting temperature profiles are shown in Fig. 2
for the same thermal current in each case. It is imme-
diately apparent that the temperature discontinuity for
the (001) �29 boundary is larger than that of either
the (001) �101 or the (111) �31 boundaries. We thus

Figure 2 Temperature profiles in the presence of an applied thermal
current for the (a) (001) θ = 43.60◦ �29, (b) (001) θ = 11.42◦ �101,
and (c) (111) θ = 42.10◦ �31 grain-boundary systems. In each case the
location of the grain boundary coincides with the discontinuous jump in
the temperature profile. The applied thermal current is the same in each
case.

conclude that the (001) �29 boundary has the lowest
Kapitza conductance; the actual values of the Kaptiza
conductance are shown in Table I. Since the simula-
tions of Maiti et al. [7] for two symmetric tilt GBs in Si
were determined using a very similar method and also
for the SW potential, they are included also. It is re-
markable that, in spite of the wide variety of structures
considered, and the rather different energies, the values
of σK for the five different GBs are so very similar.
While our results suggest that the amount of disorder
in the grain boundary region can have a significant ef-
fect, it is apparent that σK for the strongly disordered
(001) �29 boundary is actually very close to the re-
sults of Maiti et al. [7] for the tilt GBs, which have a
high degree of structural order. While this may suggest
a difference between tilt and twist GBs, more system-
atic data is required before a definitive statement can
be made.

4. Phonon wave-packet dynamics
While the simulations presented in the last section al-
lowed us to make a direct comparison of σK for different
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TABL E I Values of the Kapitza conductance for the three twist grain
boundaries studied in this work at T = 500◦K. For comparison, we also
include in this table values of σK at 575◦K taken from Maiti et al. [7]
for two symmetric tilt grain boundaries (STGBs)

Egb σK (GW/m2K) @ σK (GW/m2K)
Grain boundary (J/m2) 500◦K(∗) and 575◦K(†) @ 1000◦K

(001) θ = 1.32 0.80 ± 0.10∗ 0.99 ± 0.10
43.60◦ �29

(001) θ = 0.91 1.63 ± 0.20∗ 1.95 ± 0.20
11.42◦ �101

(111) θ = 0.64 1.42 ± 0.20∗ 1.46 ± 0.20
42.10◦ �31

(310) �5 STGB 0.9† –
(510) �13 STGB 0.8† –

grain boundaries, they did not help us to understand
the underlying scattering mechanisms. To elucidate the
mechanisms of interfacial phonon scattering, before at-
tempting to understand the GBs, we first consider a sys-
tem of deceptive simplicity: an interface in which the
materials on the two sides differ only by their mass. On
one side of the interface the material is SW Si with the
mass of Si, MA = 28 amu; the material on the other
side is identical, except that MB = 4MA = 112 amu.
Thus there is no change in the structure at the interface
itself. Because the two materials differ only in their
masses, their phonon dispersion curves are identical,
except that all of the frequencies in B are lower by a
factor of two, and all phonon velocities are reduced by
a factor of two. This sets certain limits on the available
frequencies at which transmission can take place. The
highest frequency longitudinal-acoustic (LA) mode in
SW Si is at ν = 13.0 THz. Thus, the highest fre-
quency incident LA phonon in A that can be trans-
mitted as an LA phonon into B is νmax(LA → LA) =
13.0/2 = 6.5 THz. Likewise the highest frequency
longitudinal-optical (LO) mode in A is at 19.8 THz;
thus νmax(LA → LO) = 8.9 THz. From the disper-
sion curves we determine νmax(TA → TA) = 3.32
THz; because of the large gap in the spectrum for the
transverse phonons, conversion of transverse-acoustic
(TA) phonons to transverse-optical (TO) phonons is not
possible.

Using the method outlined in the previous section,
we have launched phonon wavepackets from A into B.
We consider first incident LA phonons. Fig. 3 shows a
series of snapshots of an LA wave packet with average
frequency ν = 8.73 THz (i.e., well above νmax(LA →
LA)). We see an LA mode reflected from the interface
and an LO mode transmitted with a much lower group
velocity. For incident frequencies less that νmax(L A →
LA), we find that both the reflected and transmitted
waves have LA character.

The energy-transmission coefficient can be deter-
mined from a quantitative analysis of the data in
Fig. 3. Fig. 4 shows the frequency-dependent energy-
transmission coefficient for incident LA wave packets.
We see a smooth decrease in α with increasing fre-
quency. In particular, α changes continuously even at
νmax(LA → LA) above which LA → LO conversion
takes place. As expected from the analysis of the dis-
persion curves, α → 0 at νmax(LA → LO) = 8.9 THz.

Figure 3 Snapshots of displacements for a LA wave packet with ν =
8.73 THz (i.e., well above νmax(LA → LA) = 6.5 THz). Due to the
difference in mass of the atoms on the two sides of the interface, the LA
wave packet scatters into a LO wave-packet for z > 0.

Figure 4 Frequency dependence of the energy-transmission coefficient
α for incident LA wave-packets (circles). Solid line shows results from
the one-dimensional spring model. The inset shows the dispersion curves
for (001) phonons in Si, described by the Stillinger-Weber potential. The
dotted line corresponds to the longitudinal modes of the one-dimensional
spring model.

The decrease in α(ν) with increasing ν can be under-
stood using a simple model of a one-dimensional array
of masses connected by identical springs. The dashed
line in the inset to Fig. 4 shows that the dispersion rela-
tion for this simple model is very similar to that of SW
Si in an extended zone scheme where the LO modes
may be regarded as a continuation of the LA branch.
The resulting α(ν) is shown for comparison in Fig. 4.
The level of agreement is remarkably high, reflecting
the similarity of the dispersion relations shown in the
inset.

Phonons in the TA branch are more complicated than
phonons in the LA branch because the polarization di-
rection has to be taken into account. To vary the polar-
ization of the incident wave packet, at each k-vector we
form different linear combinations of the two degener-
ate TA modes. We find that the value of α varies with
the polarization of the incident wave in a systematic
manner, with the effect of polarization becoming more
pronounced with increasing frequency [8].

The results on this artificially simple interface can
be understood purely in terms of the properties of the
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Figure 5 Snapshots of the z displacement of atoms for the case of an LA wave-packet scattering from the (001) �29 grain boundary: (a) kz ∼ 0.025(2
π /a0), and (b) kz ∼ 0.400(2 π /a0). The vertical dotted line at z =50 indicates the location of the grain boundary.

materials on the two sides. However, real grain bound-
aries have complicated structures, with local atomic en-
vironments very different from the bulk. Moreover, for
the symmetric twist boundaries we consider here, the
GB normal is the same on the two sides of the interface.
Thus for LA and LO modes, the vibrational properties
on the two sides of the interface are identical; for TA
and TO modes, there is a difference on the two sides,
arising from the twist rotation.

We have investigated the scattering of phonon wave
packets from two of the GBs investigated above, namely
the (001) �29 and the (001) �101. We focus on LA
modes because they are the most important branch for
thermal transport. In particular, we consider the case
where the incident wave packet has a wave vector per-
pendicular to the interface. In other words, the wave
vector of the incident phonon is parallel to the z-axis:
kz �= 0, whereas kx = 0 and ky = 0.

In Fig. 5a and b we show snapshots at different times
of the z-displacement of the atoms as a function of posi-
tion along the z direction in the simulation cell from the

(001) �29 GB for two different incident wave vectors.
Fig. 5a shows the scattering of a phonon wave packet
with a very long average wavelength of 40a0, corre-
sponding to an average frequency of 0.37 THz and a
wave vector of kz = 0.025(2π/a0). It is apparent that
this wave packet is almost unaffected by the presence of
the grain boundary, and nearly all the incident energy is
transmitted to the region z > 0. By contrast, the wave
packet shown in Fig. 5b, with an average wavelength
of 2.5a0 and frequency and wave vector of 5.81 THz
and kz = 0.400(2π/a0), is strongly scattered by the
interface, with a significant amount of the total energy
being reflected back to the region z < 0. The spread in
real space of the atomic displacements seen in Fig. 5b
at 33.2 ps suggests that a significant amount of the in-
cident energy has been scattered into modes different
from the incident wave packet. We saw no such effects
in the phonon scattering from the simple interfaces in
Fig. 3.

Fig. 6 shows the frequency dependence of the trans-
mission coefficient α of wave packets comprised of
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Figure 6 Frequency dependence of the energy transmission coefficient,
α (filled circles), and reflection coefficient, β (open circles), for incident
LA wave packets scattered from the (001) �29 GB in Si. Since all energy
is either reflected from or transmitted through the boundary, α + β = 1.
The squares denote α for a simulation cell containing 2 × 2 cells of the
(001) �29 grain boundary system.

LA modes scattering from the (001) �29 grain bound-
ary, compiled from an analysis of snapshots such as
those at the latest time in Fig. 5a and b. Also shown
in Fig. 6 is the reflection coefficient β, which is de-
fined to be the fraction of the incident energy that is
reflected from the grain boundary to the region z < 0.
Since all of the incident energy is either transmitted
to the region z > 0 or reflected to the region z < 0,
α + β = 1 for each incident frequency. The squares
in Fig. 6 correspond to a simulation cell is twice as
large in the x-y dimensions (i.e. 4 times the area),
demonstrating that size effects in the x-y plane are
unimportant.

To analyze the phonon scattering in detail, we have
performed Fourier analyses of the reflected and trans-
mitted waves. To characterize the component of the
wave vector parallel to the interface, it is useful define

a quantity kxy =
√

k2
x + k2

y . In Fig. 7, the transmitted

Figure 7 Analysis of the transmitted wave packets for a wave packet with kz = 0.40(2 π/a0) incident on the (001) �29 GB. The displacements in
this picture correspond to those in Fig. 5b at t ∼ 33.2 ps. The top panel shows the total atomic displacements. The second panel shows only the
components of the wave that correspond to LA modes with kxy = 0. Because these modes are the same as those that comprised the incident wave
packet, this part of the transmitted wave is unscattered. The third panel shows the scattered LA modes i.e., those modes that have kxy �= 0. Finally, he
bottom panel shows the displacements that are just due to TA modes.

wave from Fig. 5b into three components: an unscat-
tered LA mode, i.e., a mode with the same k-vector as
the incident wave packet, for which kxy = 0; a scattered
LA mode which has kxy �= 0; and TA modes. Since,
none of the incident LA modes has sufficient energy to
create optical modes, they need not be considered here.
Much of the incident wave packet is not scattered and
remains in LA modes with kxy = 0. This unscattered
wave packet is closely followed by wave packets com-
prised of LA modes with kxy �= 0. Finally, a significant
amount of energy is found in TA modes. The relative po-
sitions of the wave packets can be understood in terms
of the z-component of the group velocities of the dif-
ferent modes. Although there is a significant amount
of mode conversion, we find that only modes with vi-
brational frequencies equal to the frequency of the in-
cident wave packet are excited. Thus these interactions
are completely elastic.

The results presented here for the scattering of
boundaries show for the first time in detail the mecha-
nism of phonon scattering from grain boundaries. Con-
sistent with our expectations from the MD simulations
of the Kaptiza conductance presented in Section 3, the
(001) �29 boundary scatters phonons more strongly
than the lower energy (001) �101 boundary. In both
cases, in the limit of very low frequency, the wave
packet passed through the grain boundary with essen-
tially no scattering. By contrast, as the frequency of
the incident wave packet is increased, significant mode
conversion takes place.

5. Outlook
Our theoretical understanding of phonon-mediated in-
terfacial thermal transport is still in its infancy.
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However, many of the simulation tools required to de-
velop this understanding now exist. Although not dis-
cussed above, there is a direct and rigorous formalism
by which the phonon transmission coefficients can be
used to determine the thermal conductivity. However,
this requires knowledge of the transmission coefficient
for all modes and frequencies, information that is not
yet available for even a single (model) grain boundary.

There are two traditional theoretical approaches
to understanding interfacial thermal transport. In the
acoustic mismatch model (AMM), the transmission
coefficient is determined from the differing acous-
tic impedances—the product of the sound speed and
density—on the two sides of the interface. In the dif-
fuse mismatch model (DMM), it is assumed that all
phonons are absorbed by the boundary and re-emitted
in direct proportion to the phonon density of states on
each side. It is noteworthy that neither approach takes
into account the structure or properties of the inter-
face itself. It is instructive to compare our results to the
predictions of the AMM and DMM. Since the AMM
deal only with the mass density and elastic constants, it
predicts that the grain boundaries studied here should
completely transmit all the incident energy, i.e., α = 1,
which is indeed the case for ω → 0 (see Figs 3 and 6).
However, as the frequency of the incident wave packet
increases, the energy-transmission coefficient becomes
significantly less than unity. For a very disordered inter-
face, such as the (001) �29 grain boundary the DMM
may be a good model for the scattering, particularly at
high frequencies.

Finally, we mention that the results of this approach
can be used to develop more realistic models of in-
terfacial scattering for use in mesoscale simulation ap-
proaches. In a mesoscale approach, the energy is trans-

ported by particles localized in real space meant to
represent localized phonon wave packets [9]. To de-
scribe transport in a system with interfaces, rules are
required to describe the scattering at interfaces. From
the results presented in this paper, one could develop
a simple yet general model to describe grain bound-
ary scattering. Specifically, our results indicate that
any model should have a transmission coefficient es-
sentially equal to unity for long-wavelength phonons.
The scattering in such a model should increase with in-
creasing frequency, with the degree of scattering grad-
ually approaching the DMM limit at least in the case
of disordered grain boundaries. Such a model would
represent an improvement over current approaches that
are limited either to the extremes of the AMM or the
DMM.
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